The City of George is pleased to present this year’s annual Water Quality Report. This report is a summary of testing results conducted within the last five years. The City of George performs many tests each year to ensure that you are provided with a safe, reliable supply of drinking water. We want you to understand the efforts we make to continually provide safe and dependable drinking water every day. Please refer to the water quality information on page two of this report.

If you have any questions or concerns about your water quality, please contact Aaron Harwood, Water Systems Operator, at pwd@cityofgeorge.org. The City of George wants our consumers to be informed about their water service provider.

INFORMATION FROM THE EPA

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses, parasites and bacteria, which may come from septic systems, livestock, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, wastewater discharges, and farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (1-800-426-4791).

In order to ensure that tap water is safe to drink, the Department of Health and EPA prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and the Washington Department of Agriculture regulations establish limits for contaminants in bottled water that must provide a similar degree of safety.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo o hable con alguien que lo entienda bien.
2017 Water Quality Information

City of George: PWSID #27395T

The water quality information presented in the tables is from the most recent round of testing done in accordance with regulations.

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation (Y/N)</th>
<th>Sample Date</th>
<th>Average Level Detected</th>
<th>Range of Detectations</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate** (ppm)</td>
<td>NO</td>
<td>Dec. 2017</td>
<td>ND (S04)</td>
<td>One Sample</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct. 2017</td>
<td>3.27 (S03)</td>
<td>One Sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec. 2014</td>
<td>4.58 (S02)</td>
<td>One Sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec. 2014</td>
<td>4.60 (S01)</td>
<td>One Sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic (ppb)</td>
<td>No</td>
<td>2016</td>
<td>2.0 (S04)</td>
<td>One Sample</td>
<td>10</td>
<td>0</td>
<td>Erosion from natural deposits; Runoff from orchards; Runoff from glass and electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2 (S03)</td>
<td></td>
<td></td>
<td></td>
<td>production wastes</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>No</td>
<td>2016</td>
<td>0.46 (S04)</td>
<td>One Sample</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.57 (S03)</td>
<td></td>
<td></td>
<td></td>
<td>fertilizer and aluminum factories</td>
</tr>
</tbody>
</table>

Disinfection Byproducts

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation (Y/N)</th>
<th>Sample Date</th>
<th>Highest Level Detected</th>
<th>Range of Detectations</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (ppb)</td>
<td>NO</td>
<td>Sept. 2017</td>
<td>14.9</td>
<td>One Sample</td>
<td>80</td>
<td>N/A</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>

Lead and Copper - Ten Sites Sampled

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation (Y/N)</th>
<th>Sample Date</th>
<th>90th% Level Detected</th>
<th>Range of Detectations</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead* (ppb)</td>
<td>NO</td>
<td>July 2017</td>
<td>3.5</td>
<td>ND – 5.3</td>
<td>15(AL)</td>
<td>0</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>NO</td>
<td>July 2017</td>
<td>0.078</td>
<td>ND – 0.109</td>
<td>1.3(AL)</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation (Y/N)</th>
<th>Sample Date</th>
<th>Highest Level Detected</th>
<th>Range of Detectations</th>
<th>MCL</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha (pCi/L)</td>
<td>NO</td>
<td>Sept. 2015</td>
<td>4.81</td>
<td>One Sample</td>
<td>15</td>
<td>0</td>
<td>Certain minerals are radioactive and may emit a form of radiation known as alpha radiation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Some people who drink water containing alpha emitters in excess of the MCL over many years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>have increased risk of getting cancer.</td>
</tr>
</tbody>
</table>

*Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than that at other homes in the community as a result of materials used in your home’s plumbing. If you are concerned about elevated lead levels in your home’s water, you may wish to have your water tested. Flush your tap water for 30 seconds to 2 minutes before using tap water to reduce lead content. Additional information is available from the Safe Drinking Water Hotline, 800-426-4791.

**Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your local health care provider.

Definitions

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

N/A: Not Applicable

ND: Not Detected

ppm: parts per million

One part per million (ppm) is:

- 3 drops in 42 gallons
- 1 second in 12 days
- 1 penny in $10,000
- 1 inch in 16 miles

ppb: parts per billion

One part per billion (ppb) is:

- 1 drop in 14,000 gallons
- 1 second in 32 years
- 1 penny in $10,000,000
- 1 inch in 16,000 miles
Information about your water

Your water comes from two wells. Well 2 is located near the water reservoir next to I-90. Well 3 is located at the south end of town next to the new reservoir. Well 1 is currently offline.

Your water is treated with chlorine in accordance with the rules and regulations set forth by the Washington State Department of Health. Many public water systems add chlorine to their drinking water supply for the purpose of disinfection. Disinfection kills or deactivates harmful microorganisms that can cause illness.

The George water system adopted a water conservation goal as a result of Washington State's 2007 Water Use Efficiency Rule (WUE). The WUE Rule requires that the water system's goal be re-established at a minimum of every six years, and that progress towards the goal be reported annually to the State and to the George customers. In 2016 we used approximately 4,413,000 gallons more water than the previous year. Over watering lawns and contractors using water for construction could be the main reason.

Ways To Save Water At Home*

(*Water Savings as Percent of Total Interior Water Use)

- Low-Flow Showerheads (or Flow Restrictors), 12 percent
- Low-Water Use Toilets (or Plastic Bottles or Water Dams in Toilet Reservoir), 18 percent
- Low-Water Use Clothes Washers, 5 percent
- Low-Flow Aerators on Faucets (or Replacement Faucets), 2 percent
- Low-Water Use Dishwasher, 4 percent
- Insulation on Hot Water Lines, 4 percent

Source: Corbitt, Robert A.
Standard Handbook of Environmental Engineering,